RANKL expression specifically observed in vivo promotes epithelial mesenchymal transition and tumor progression.

نویسندگان

  • Tamaki Yamada
  • Masumi Tsuda
  • Tomomi Takahashi
  • Yasunori Totsuka
  • Masanobu Shindoh
  • Yusuke Ohba
چکیده

Recent findings have focused attention on the molecular consequences of the microenvironment in tumor progression, but events occurring in cancer cells themselves in response to their ambient conditions remain obscure. Here, we identify receptor activator of nuclear factor κB ligand (RANKL) as a microenvironment-specific factor essential for tumorigenesis in vivo, using head and neck squamous cell carcinoma (HNSCC) as a model. In human HNSCC tissues, RANKL is abundantly expressed, and its expression level correlates with the histological grade of differentiation. RANKL levels are significantly higher in poorly differentiated SCCs than in well or moderately differentiated SCCs. In contrast, all HNSCC cell lines tested displayed extremely low RANKL expression; however, RANKL is efficiently up-regulated when these cell lines are inoculated in the head and neck region of mice. RANKL expression is restored in a microenvironment-specific manner, and cannot be observed when the cells are inoculated in the hindlimbs. Forced expression of RANKL compensates for tumor growth in the hindlimb milieu, promotes epithelial mesenchymal transition, and induces tumor angiogenesis, in a manner independent of vascular endothelial growth factor (VEGF). These results implicate RANKL expression causatively in tumor growth and progression in HNSCC in vivo. RANKL may provide a novel functional marker for biological malignancy and a therapeutic target based on the specific nature of the microenvironment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

The role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor

Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression.  In this study, we aimed to assess the potential impacts...

متن کامل

Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines

BACKGROUND Increased motility and invasiveness of cancer cells are reminiscent of the epithelial-mesenchymal transition (EMT), which occurs during cancer progression and metastasis. Recent studies have indicated the expression of receptor activator of nuclear factor-κB (RANK) in various solid tumors, including breast cancer. Although activation of the RANK ligand (RANKL)/RANK system promotes ce...

متن کامل

Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line

Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...

متن کامل

Effect of Interval Training on the Expression of Mesenchymal Biomarker Vimentin and Tumor Volume in Mice with Breast Cancer

Introduction Many deaths from cancer are due to metastases, a process which involves the epithelial-mesenchymal transition (EMT). On the other hand, regular exercise plays an important role in inhibiting the progression of breast cancer. Therefore, the purpose of this study was to investigate the influence of interval training on the expression of VIM, the gene encoding for EMT biomarker viment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American journal of pathology

دوره 178 6  شماره 

صفحات  -

تاریخ انتشار 2011